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1 Introduction

In this paper I discuss a system written in Java for performing Bayesian data analyses. The goals of this
system are to minimize the amount of programming time necessary to start Markov Chain Monte Carlo
(MCMC) algorithms running. If necessary we are willing to incur increased processing time if we save our
own time. An object-oriented framework has many advantages for constructing a general-purpose Bayesian
analysis system: roughly speaking, by modifying a single object, one may change a model by adding another
level to a hierarchical model, change a distributional form or link function, or change the form of a Metropolis
step.

The structure of this paper is as follows. Section 2 is the most extensive section, containing a description
of the architecture of the software, serving as a users’ manual, and indicating how analysts may construct
their own applications by extending the key classes in the existing software.

The acronym YADAS stands for “yet another data analysis system.” The author is indebted to Steve
Upton for this suggestion.

1.1 Terse review of object-oriented terminology

Object-oriented programming consists of manipulations of objects. A class is an abstract description of what
all objects belonging to that class have in common. An individual object created at run time which is an
example of a class is known as an instance of that class. Class descriptions include data fields, so that a class
is in part a data structure, but they also include methods. A method is a function: the thing that makes
methods different from non-object-oriented functions is that each method belongs to an object. In addition
to the explicit argument list of a method, it implicitly has the object to which it belongs as an argument, and
this will often be the most important argument in good object-oriented designs. A special type of method
is the constructor method of a class, which is called to return a new instance of the class.

Interfaces are collections of methods. A class is said to implement an interface if it contains method
definitions for all methods contained in the interface. An interface is an important component of an object-
oriented design because many otherwise different classes which implement an interface can be manipulated
together: for example, one may construct an array of objects that all implement the interface, then loop
through this array, calling the interface’s methods for all its elements. Additionally, one can write methods
whose arguments are objects that implement the interface if the methods treat the arguments only through
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the methods of the interface. In this way, different classes can be handled using the same code, where
if the different classes require somewhat different behavior, this can be taken care of using each class’s
implementation of a method. This sort of behavior is referred to as polymorphism.

Another fundamental concept in object-oriented design is that of inheritance. When a class is inherited

from (or a subclass of) another class (the superclass), its data fields are a superset of the superclass’s, and
it has a superset of the methods of the superclass, although these methods can be redefined in the subclass.

A somewhat advanced topic in Java is the inner class. An inner class is defined, and only used, inside
another class. When inner classes are appropriate, they can make it easier to understand the code, and they
also have the advantage of having access to the outer class’s fields and methods. (This concept of differential
access to fields and methods is important but not particularly relevant to this paper. Programmers are
encouraged to think about which fields and methods in a class should only be called by an instance of the
class itself, and declare these fields and methods as private; other fields and methods have public or some
other form of access. The advantage is that another programmer using a class that you have written does
not need to pay any attention to the private fields and methods. This is an example of the concept of “hiding
the implementation.”)

1.2 The DataFrame class: loading data

To describe the MCMC-related classes in the remainder of this paper, it is necessary to have a notation to
refer to data that have been imported from files. YADAS uses a class called DataFrame. It will assign arrays
of data of various types to appropriate names. For example, the file test.dat contains a pipe-separated
rectangular array of data with three header lines as follows:

60

y|x|group|n

r|r|i|r

2.43|0.80|0|5

2.19|0.65|0|2

2.99|1.45|1|4

.................

The first line indicates that there are 60 lines of data. The next line contains variable names, and the third
line contains variable type information (’r’ for real data, ’i’ for integer, and ’s’ for strings). The first two
columns provide initial values for the y and x variables; one or both of these variables could be constant in
which case the values do not change from their initial values. The third column lists which of two or more
groups the data points belong to (in other words, the column helps define a categorical variable). The fourth
column, for example, lists how many repeated measurements went into computing the mean value listed in
the y column; this would later be used in describing the amount of variability in the data points. We now
load the data using the command

DataFrame d = new DataFrame(‘‘test.dat’’);

The DataFrame class contains many useful methods.

• r(String name) returns an array of the variable in the data frame that is named name. i(String

name) and s(String name) are analogous but used for integer or string variables respectively.

• r(double x) returns an array of the length of the variables in the data frame, all of whose entries are
equal to x. i(double x) and s(double x) are analogous.
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• u() returns an array from zero to one less than the length of the variables in the data frame.

1.3 Some related work

An existing software package available in two incarnations, BUGS and WinBUGS, (Spiegelhalter et al, 1994;
Lunn et al, 2000), is very useful for Bayesian data analyses, but it handles only a limited class of models and
is not straightforward to extend. Also, it is not possible to call it as a subroutine of other code, as would be
necessary in the design problem that uses, for example, a genetic algorithm.

Another package developed at Los Alamos, the Bayes Inference Engine (Hanson and Cunningham, 1999)
performs Bayesian analyses of imaging problems. It is an excellent package for radiography problems, but it
does not include methods for analyzing more general problems.

2 An Object-Oriented Description of Bayesian Data Analysis

The philosophy embodied in the software is that there are three types of components to a Bayesian data
analysis: parameters, probabilistic links between these parameters (which we will refer to as “bonds”), and
methods of updating the parameters. In an object-oriented architecture, each of these types of components
becomes a class or an interface. In this section we discuss the MCMCParameter class, the MCMCBond interface,
and the MCMCUpdate interface, how users can use them in their applications, and how users can extend them
to add power to the framework.

2.1 MCMCParameters

The first thing an analyst does when performing an analysis using YADAS is construct an array of MCMCParameters.
First, we discuss what an MCMCParameter is from a statistics point of view. The answer will depend on the
application, but the rough idea is that all quantities that are updated in the same way and which relate to
the other parameters in the same way, will be grouped together in a single MCMCParameter. For example,
in a regression problem with a univariate response and J predictor variables plus an intercept, the response
variable Y = {Yi : 1 ≤ i ≤ n} is an MCMCParameter, the jth covariate X j = {Xj

i : 1 ≤ i ≤ n} is an-
other MCMCParameter, the vector of regression coefficients β = {βj : 0 ≤ j ≤ J} is another, and further
MCMCParameters are the error variance σ2, and the constants in the prior distributions for β and σ2. Note
that data, constants, and unknown parameters can all be MCMCParameters; the only difference is that some of
these parameters are updated in the course of the MCMC, while others remain constant. (It is not necessary
that constants be included in the model as MCMCParameters.)

An MCMCParameter can be defined more clearly from the point of view of the software. First, an
MCMCParameter contains a value record (accessible using the method getValue()) which contains the (cur-
rent) value of the parameter. An MCMCParameter also includes an array of real-valued step sizes which
indicate how large the Metropolis steps the parameter takes should be. This step size array is of the same
length as the value record, although in many applications all of its entries will be the same.

An example of a definition of an array of MCMCParameters is as follows. The expressions involving d refer
to a DataFrame (see §1.2).

MCMCParameter paramarray[] = new MCMCParameter[]

{ x = new MCMCParameter (d.r(‘‘x’’), d.r(0.0), ‘‘x’’),
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mu = new MCMCParameter (new double[] {1.0, 0.0}, d.r(0.1, 2), ‘‘mu’’),

sigma = new MCMCParameter (new double[] {1.0}, d.r(0.2, 1), ‘‘sigma’’),

};

The first parameter is x, whose initial values are given by the elements real-valued variable x in the DataFrame
d (this is the meaning of d.r(‘‘x’’)). x is data rather than a modifiable parameter, since the second
argument to the MCMCParameter constructor is an array of all zeroes (for a DataFrame d, the r method
called with a single real-valued argument returns an array of the same length as the variables in d with all
entries equal to that argument). The second variable, mu, has only two values which are initially set to one
and zero; presumably this is a two-sample analysis and elsewhere we will indicate which of the data points
come from the population with the first mean and which from the second. The two elements of mu will take
Metropolis steps of the same size, namely 0.1 (d.r(x, n) returns an array of length n whose elements are
all equal to x). The third parameter, sigma, has only one value and hence only one step size. In this analysis
one assumes homoscedastic errors.

MCMCParameter is a class that implements the MCMCUpdate interface, which means that it knows how to
try to update itself. We will discuss the MCMCUpdate interface later, but all MCMCParameters are capable
of updating themselves in the following way. MCMCParameters contain an array of step sizes to be used in
Metropolis steps. The default procedure for updating an MCMCParameter involves looping over its components
and generating a Metropolis candidate by adding a random Gaussian amount to a component, with standard
deviation given by the Metropolis step size.

The MCMCParameter constructor, then, takes three arguments: an array of doubles to place in the value
field, an array of (double) Metropolis step sizes, and a String which contains the name of the parameter
(values of the parameter will be saved to a .out file of that name).

The default structure of an MCMCParameter doesn’t necessarily work for all parameters in all applica-
tions. Sometimes it is necessary to subclass MCMCParameter to modify the way it behaves (e.g. to change
the way it is updated). For example, problems with ordering restrictions on some of the parameters, the
OrderedMCMCParameter class is useful. OrderedMCMCParameters contain information about how some of
the elements are constrained to be less than other elements. This has implications for how the parame-
ter can be updated legitimately and efficiently: in fact, we have proposed four different types of updates
that are relevant to OrderedMCMCParameters. Therefore, the author of the OrderedMCMCParameter class
extends MCMCParameter, defines some new fields to hold the ordering information, defines inner classes which
implement MCMCUpdate to describe these four new update types, and defines the MCMCUpdate methods of
OrderedMCMCParameter to loop through these update inner classes but otherwise to do nothing. Covariance
matrices are also a special type of parameter: one needs to know how to take their trace and determinant,
and also how to update them in MCMC, for example by proposing moves that preserve positive definiteness.
A CovarianceMatrix MCMCParameter is under development.

One advantage of the MCMCParameter class is that it is extremely easy to modify application code in order
to convert a parameter from constant to random: this is done by changing the parameter’s Metropolis step
size from zero to positive or vice versa. Also, it is very easy to convert an application in which a variance
(for example) is constant across data points, to one in which variance is a function of the data point with
the help of appropriate ArgumentMakers (§2.2.1).

2.2 The MCMCBond Interface

After an analyst makes an array of MCMCParameters, the next step is to construct an array of objects imple-
menting the MCMCBond interface in order to describe the probabilistic relationships between the parameters.
An MCMCBond is a relationship between two or more MCMCParameters, typically consisting of a probability
density function. By far the most common class implementing MCMCBond is BasicMCMCBond, which handles
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most continuous distributions and which will be discussed in detail later.

The MCMCBond interface consists of five methods: the compute() method with four different argument
lists, and the getParamList() method. This last returns an ArrayList containing all the parameters
involved in the bond. The compute() methods are used to calculate the bond’s contribution to the change
in posterior when one or more of the parameters is changed. Each of the four different argument lists
handles a way in which the parameters can be changed. The first takes an int which indicates which of the
parameters will be changed, a double which is the new value of one of the elements of the parameter, and an
int indicating which element is a candidate to be changed. The second takes the int argument and then an
entire array to be the new value of the parameter. The third is like the second except that it allows multiple
parameters to be changed, so that it takes an array of ints and a two-dimensional array of doubles to be
the new values. The fourth is like the third, but the number of parameters in the argument is less than the
number of parameters in the bond, so that a third argument is necessary to demonstrate which of the bond’s
parameters will be changed.

2.2.1 BasicMCMCBond

One of the most critical classes in YADAS is the BasicMCMCBond class, which handles a very large number
of types of bond. The intent of this class is to handle a large number of commonly encountered relationships
between parameters, and to make it as easy as possible to perform tasks like make a model hierarchical or
add a level to the hierarchy, change the distributional form of the relationship, or to change the link function.
The constructor of BasicMCMCBond takes several arguments:

1. an array of MCMCParameters that are related by the bond;

2. an array of objects implementing the ArgumentMaker interface;

3. an object implementing the Likelihood interface (e.g. Gaussian, Gamma).

Likelihoods. A class implementing the Likelihood interface is just a function: it has a compute method
which takes a two-dimensional array of doubles and returns the (double) value of the likelihood func-
tion evaluated at these arguments. Examples of Likelihoods are Gaussian, Gamma, InverseGamma (al-
though the inverse gamma distribution can also be implemented using the Gamma class and an appropriate
ArgumentMaker), and Dirichlet.

ArgumentMakers The ArgumentMaker interface is responsible for much of the power and versatility of
the BasicMCMCBond construct. ArgumentMakers have a single method, getArgument, which takes two-
dimensional arrays of doubles, and converts them into one-dimensional arrays of doubles. The input arrays
are typically (always, in a BasicMCMCBond) all the value records of all the MCMCParameters in the bond,
before and after being perturbed by a candidate Metropolis step. The output will go directly into the
Likelihood function. A compelling example of the ArgumentMaker is LinearModelArgument, which returns
sums of products of pairs of variables. It is trivial to add capability for a link function for generalized linear
models: GLMArgument will be a subclass of LinearModelArgument because it will behave in almost exactly
the same way, but when the linear argument is computed, it needs to be run through a link function that
will be an additional argument to the GLMArgument constructor. Note that different families with identity
links can be handled using LinearModelArguments and changing the Likelihood function.

Another method in the ArgumentMaker interface is a method that computes the log Jacobian to be added
to the log likelihood. Also one needs to determine whether a parameter plays the role of data in a bond, so
that the Jacobian function is only computed for data.
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IdentityArgument The most common ArgumentMaker is IdentityArgument, which picks one of the
variables in the input to getArgument() and returns it unchanged. In fact, there is an additional construc-
tor to BasicMCMCBond which requires no ArgumentMakers as arguments and which instead constructs one
IdentityArgument for each parameter in the bond. The constructor of IdentityArgument takes a single
argument, an integer encoding which variable to return. For example, suppose that we are considering a
model with measurement error: a variable called u has been measured with error and its true value is called
trueu. The measurement process generates Gaussian errors of known standard deviation sdu. u, trueu,
and sdu are all MCMCParameters. This bond is specified by

new BasicMCMCBond (new MCMCParameter[] {u, trueu, sdu},

new Gaussian());

In this example u, trueu, and sdu all have the same length, so that the ith element of u has mean equal to
the ith element of trueu and standard deviation equal to the ith element of sdu. Another way of saying this
is that the ArgumentMakers in this bond are identity functions, returning the values of the three parameters
intact. The expression above is shorthand for a more explicit description of the identity arguments:

new BasicMCMCBond (new MCMCParameter[] {u, trueu, sdu},

IdentityArgument.IdentityArgumentArray(3),

new Gaussian());

here the IdentityArgumentArray returns three IdentityArguments, the first of which provides the first
parameter, the second argument the second parameter, etc. This last expression is in turn shorthand for

new BasicMCMCBond (new MCMCParameter[] {u, trueu, sdu},

new ArgumentMaker[] { new IdentityArgument(0),

new IdentityArgument(1),

new IdentityArgument(2) },

new Gaussian());

GroupArgument Almost as common is GroupArgument, which is used in the cases where a single
component of a parameter is used in the distribution for more than one component of another parameter.
(For example, if X1, . . . , Xn are normally distributed with common mean µ and common standard deviation
σ, a GroupArgument is required to expand the scalars µ and σ so that each of the n X’s has this mean
and standard deviation.) The GroupArgument constructor takes two arguments, an int describing which
parameter to return, and an array of ints called an expander. If the ith element of the expander is j and
if the which argument is equal to k, then the ith element of the return value of GroupArgument is the jth
element of the kth column of the input to getArgument(). For example, suppose that we have a sample
of values theta from a Gaussian distribution with common mean mutheta and common standard deviation
sdtheta.

new BasicMCMCBond (new MCMCParameter[] { theta, mutheta, sdtheta },

new ArgumentMaker[] { new IdentityArgument(0),

new GroupArgument(1, d.i(0)),

new GroupArgument(2, d.i(0)) } ,

new Gaussian());

The first element in the array of ArgumentMakers returns the 0th parameter, theta, without modification.
The second and third ArgumentMakers expand mutheta and sdtheta so that they are the same length as
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theta. d.i(0) constructs an array of zeroes of the same length as the variables in d. Since all the elements
of this array are zero, mutheta is expanded by taking repeated copies of its 0th element.

ConstantArgument ConstantArgument is used to return arguments that are not modified during the
course of the MCMC. Because of this class, it is not necessary to define excessive numbers of MCMCParameters.
ConstantArgument has three constructors, one that provides a scalar constant, one that provides an array of
identical scalar constants, and one that uses an array of doubles read, for instance, from a file. For example,
to say that the MCMCParameter alpha of length n has a Gaussian prior distribution with mean given by the
variable named mualpha in the DataFrame d1 and with common standard deviation 1,

new BasicMCMCBond (new MCMCParameter[] { alpha },

new ArgumentMaker[]

{ new IdentityArgument (0),

new ConstantArgument (d1.r(‘‘mualpha’’)),

new ConstantArgument (1, n) },

new Gaussian ());

LinearModelArgument This class makes it possible to do all sorts of linear regressions using only
the Gaussian likelihood function, or also to change a linear model to a generalized linear model by changing
only one statement. Its interface is in a state of flux, but it currently takes arguments that indicate whether
or not the model contains an intercept, which parameters to multiply by each other before summing, and
how to expand these parameters. For example, suppose that we are fitting a model to results from auto races
on several different tracks, in which driver abilities are allowed to improve linearly over time: the ability of
driver i in year j is θij = αi + jβi. There is also a variance parameter, φ, which depends on the track. This
is expressed in YADAS as follows.

bondarray[0] = new BasicMCMCBond (

new MCMCParameter[] {alpha, beta, year, phi},

new ArgumentMaker[]

{ new LinearModelArgument(true, new int[] {0, 1, 2},

new int[][] { d.i("driverid"), d.i("driverid"),

d.u(d.r("yearid").length) }),

new GroupArgument(3, d.i("trackid")) },

new AttritionLikelihood( d.i("raceid"), d.i("finishid") ));

Four parameters go into this bond: alpha, beta, year, and phi. year is the covariate (note that it would
also be possible to write LinearModelArgument so that year could be handled as a constant instead of as
a parameter). The likelihood function is a form intended for rank data of this form; see [Stern, 1990] and
[Graves et al, 2001], but in order to appreciate the LinearModelArgument, it is not necessary to understand
the likelihood function other than the fact that it requires a θ and a φ argument. The true signifies that
the linear model includes an intercept, while the new int[] {0, 1, 2} signifies that the zeroth, first, and
second parameters (alpha, beta, year) in the bond contribute to the linear model. The next argument,
the two-dimensional array of ints, is an array of expanders: alpha and beta contain one coefficient for
each driver and need to be expanded to the length of the data set, which contains one observation for each
finishing position in each race. d.i(‘‘driverid’’) is an array of ints extracted from the DataFrame d; if
the ith element of this array is equal to j, then the jth driver corresponds to the ith data point. The jth
element of alpha and beta refer to the jth driver.

FunctionalArgument FunctionalArgument is another versatile class: in fact, one can implement
linear model arguments using it. After expanding parameters into equal-length arrays, it obtains the ith
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component of the output by applying a function to the ith components of all the inputs. The function
is specified in a class implementing the Function interface, which will typically be specified anonymously.
(The Function interface has a single method, f(double[] args)). An example here is definitely in order.
Suppose that there is a linear-like relationship between three variables u, v, and w: (u/v) = α+ β(w/v) + ε,
where ε is Gaussian noise with standard deviation θ. Further suppose that there are two or more populations,
each of which has its own value of (α, β, θ). Then we need to construct several arguments: u/v, α+ β(w/v),
and θ, in order to send them through a Gaussian likelihood.

new BasicMCMCBond

( new MCMCParameter[] { u, v, w, alpha, beta, theta },

new ArgumentMaker[]

{ new FunctionalArgument (n, 6, new int[] {},

new int[][] { new int[] {} },

new Function () {

public double f (double[] args) {

return args[0] / args[1];

}

}),

new FunctionalArgument (n, 6, new int[] { 3, 4 },

new int[][] { d.i(‘‘pop’’), d.i(‘‘pop’’) },

new Function () {

public double f (double[] args) {

return args[3] + args[4] * args[2] / args[1];

}

}),

new GroupArgument (5, d.i(‘‘pop’’)) },

new Gaussian () );

The first FunctionalArgument is in the business of computing u/v. In its definition, n and 6 refer to the
length of the u/v array and the number of parameters in the bond. The next two arguments define how the
parameters in the bond will be expanded: since they are empty, no parameters need to be expanded in order
to compute u/v (there is a unique u and v for each data point). Last comes a definition of an anonymous class
implementing the Function interface: its f method computes the ratio of its first two arguments, namely
u/v. The second FunctionalArgument computes α + β(w/v): this time, the third and fourth parameters,
alpha and beta, need to be expanded, explaining the new int[] { 3, 4 }. alpha and beta use the same
expander called “pop”: if the ith data point belongs to population j, then the ith element of d.i(‘‘pop’’)
is equal to j. The second Function computes α+ β(w/v). Finally the third argument is a GroupArgument

which expands the variance parameter θ.

2.2.2 How MCMCBonds are used

MCMCBonds exist in order that MCMCUpdates can loop over arrays of them to compute the likelihoods of
the current parameters and of the candidate new parameters. Therefore, the concept is very simple but
very powerful. While the computations that result are not optimally efficient (the code does not perform
symbolic manipulation to simplify differences of equations), the code only computes the bonds that contain
the parameter(s) potentially being changed.

When making a slight modification of an analysis, it is often as simple as adding one line of code in which
an additional MCMCBond is defined. Models can also be perturbed by changing the Likelihood object or one
of the ArgumentMakers.

8



2.3 The MCMCUpdate Interface

The MCMCUpdate interface consists of a single method, update(). The purpose of classes that implement
this interface is to choose a candidate point in parameter space to move to, and to decide whether to
move there. The simplest example involves MCMCParameter itself, as this class implements MCMCUpdate

(“each parameter knows how to update itself”). Often it is useful to choose candidate points by modifying
several parameters simultaneously, particularly when these parameters are highly correlated. We provide
the MultipleParameterUpdate class and a couple of subclasses in order to make it easier to update multiple
parameters.

Many classes that implement MCMCUpdate divide the functionality in update() into several other methods.
These methods are candidate(), relevantBonds(), acceptanceProbability(), and takeStep(), and are
nonessential but can help organize update steps in useful ways.

• candidate(). update() typically calls this method to generate a candidate set of parameters to which
the algorithm may or may not step. Most often, this candidate is generated by adding a random
Gaussian amount, with standard deviation given by the parameter’s Metropolis step size, to a single
parameter.

• relevantBonds(). This method returns an array of MCMCBonds that need to be computed in order to
decide whether or not to accept the step to the candidate. If a single parameter is being changed, this
is straightforward since MCMCParameters keep records of which bonds they are involved in.

• acceptanceProbability(). After calling candidate(), update() normally calls this method in
order to compute the probability that the candidate will be accepted. This method needs to call
relevantBonds() to compute this probability correctly.

• takeStep(). If a random uniform generated in update() is less than acceptanceProbability(), this
method actually changes the parameter(s) in the appropriate way.

These methods are useful because they organize the updating process and therefore make it easier to
add functionality by subclassing classes that contain them. For example, some parameters will work better
if their Metropolis steps are chosen multiplicatively. To implement such a Metropolis step, one writes a
subclass in which candidate() proposes a multiplicative step, and in which acceptanceProbability()

returns a Jacobian multiplied by the superclass’s acceptanceProbability() return value.

2.3.1 example: MCMCParameter

MCMCParameter itself implements the MCMCUpdate interface, so that all parameters have default ways of
updating themselves. Since MCMCParameters often have multiple components, it is necessary to update each of
these different values. To this end MCMCParameter keeps a private variable keeping track of which component
is currently being updated. update() loops over the components, calling candidate() for each component,
which adds a Gaussian amount to the current value of each component value. acceptanceProbability()

then loops over all the bonds (returned by relevantBonds()) containing the parameter, evaluating the
difference in log likelihood between the new parameter and the old. If the step is accepted, takeStep()
changes the appropriate entry in the parameter’s value record.

If there are no unusual update steps in an analysis, the main() method of the YADAS application will
typically contain a line such as

MCMCUpdate[] updatearray = new MCMCUpdate[] { mu, sigma, theta, phi };
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listing all the updatable parameters in an array.

2.3.2 example: MultipleParameterUpdate

The function of a MultipleParameterUpdate is to update two or more parameters (or even multiple compo-
nents of a single parameter) in a single Metropolis step. Therefore the constructor of the MultipleParameterUpdate
class takes two arguments: an array of MCMCParameters (some subset, presumably all, of these parameters,
will be perturbed to generate the candidate), and an object implementing the Perturber interface.

It is not yet clear in what MCMC applications MultipleParameterUpdates are useful. However, YADAS
provides a promising framework for research into their usefulness.

Perturbers Inside the candidate() method of the MultipleParameterUpdate class is a call to the
perturb method of the class implementing the Perturber interface. The Perturber interface consists
of two methods. First is perturb, which takes a two-dimensional array of doubles (it will change some
of the components of this array) and an integer whose job it is to indicate which components of the array
should now be updated. The way the int does this is dependent on the type of Perturber: a common
example is where all the parameters have the same length, and where the ith update attempts to modify the
ith element of each of the parameters. The second method in the interface is numTurns(), which indicates
how many possible values the integer argument to perturb can take on.

InterceptSlopePerturber One example of a Perturber arises in regression, where intercept and slope
parameters can be highly correlated. Suppose the analysis includes several separate simple linear regressions,
where the intercepts for the regressions arise from a hierarchical model, as do the slopes. Perhaps the typical
values of the covariate are very different in some regressions than in others. In an example from auto racing,
we had race results from five consecutive seasons, 1996 through 2000. We wished to allow drivers to improve
(or regress) linearly in time. Denote the ability of driver i in a race in year j by θij ; then we assume that
θij = αi + (j − 1998)βi. The problem with this formulation is that some drivers raced only in one year. For
example, if driver i raced only in year 2000, the data provide information about αi and βi only through the
linear combination αi + 2βi, so that αi and βi will be highly negatively correlated. More generally, suppose
that the average value of the years in which a driver competes is 1998+k; then a useful update step changes
α and β simultaneously while preserving α+kβ. The class InterceptSlopePerturber is designed to handle
this case. This perturber is implemented so that the larger of the two perturbations is of the size specified in
the step size argument. For example, if k > 1, then the candidate perturbation is α← α+σZ, β ← β+σZ/k
(Z denotes a random standard Gaussian). If k < 1, the candidate perturbation is α← α+kσZ, β ← β+σZ.

The InterceptSlopePerturber constructor takes three arguments. The first argument is an array of
two integers: the first shows which component of the two-dimensional array sent to perturb is to play the
role of the intercept, the the second shows which is to act as the slope. The second argument is an array of
double step sizes: the array is in principle the same length as the return value of numTurns(). The third
argument contains the values of the quantity k described in the previous paragraph; these will normally be
average values of the covariate. If one of these average values is zero, no update occurs. For example, consider
the auto racing problem with driver abilities that change linearly. The complete array of MCMCUpdates is
specified as follows.

MCMCUpdate[] updatearray = new MCMCUpdate[]

{ alpha, beta, phi,

new MultipleParameterUpdate

( new MCMCParameter[] {alpha, beta},

new InterceptSlopePerturber
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( new int[] {0, 1}, mss.r("abmss"), mss.r ("ratio"))),

};

This statement says that four different update steps: the ordinary individual Metropolis steps for alpha,
beta, and phi, as well as a step in which alpha and beta are updated simultaneously. The three arguments
to the InterceptSlopePerturber are an int array showing which parameters in the update array are to be
updated, an array of Metropolis step sizes (here extracted from the DataFrame called mss), and the array
that defines the ratios of the steps taken by the first and second parameters.

AddCommonPerturber Another common situation is when two parameters are highly correlated be-
cause, explicitly or implicitly, one is very nearly a constant plus another. The class to handle this is
AddCommonPerturber, which is somewhat complicated and sometimes slow enough to execute so that it is
a better idea to run the chain for additional iterations and then skip some of them. The difficulty comes in
because these parameters are of different lengths and need to be expanded.

In the following example alpha is a sample from a population of parameters with mean mualpha. Suppose
the remainder of the model is such that all of the alphas tend to remain close to mualpha and to each other.
As a result, mualpha is unable to move freely and therefore ends up with an estimated posterior distribution
that is not consistent with its prior. We therefore wish to add a common constant to mualpha and each of
the alphas in a Metropolis step.

new MultipleParameterUpdate (

new MCMCParameter[] {alpha, mualpha},

new AddCommonPerturber ( 2, alpha.length(), 1,

new int[] {1}, new int[][] { d.i("test") },

new double[] { 0.2 } )),

The six arguments for the AddCommonPerturber constructor are the number of parameters, their (expanded)
length, which parameter is the dominant parameter (see below), which parameters need to be expanded,
their expanders, and an array of step sizes. The “dominant” parameter is the parameter which governs how
many distinct update steps are implemented. Above, the scalar mualpha is dominant, which means that this
update consists of a single step, in which we add a common constant to all of the alphas as well as mualpha.
If on the other hand alpha were dominant, we would first attempt to add a constant to the first element
of alpha as well as to mualpha, then we would attempt to add something both two the second element of
alpha as well as to mualpha, and so on. (It is perhaps difficult to think of a situation in which any but the
shortest parameter is dominant.)

2.3.3 example: OrderedMCMCParameter, continued

Simple Metropolis steps are not always sufficient for good MCMC performance. Another more complicated
update class is used to update parameters whose components are unknown but whose relative order is known.
Parameters of this form can benefit from at least four different types of update steps. For this reason the
OrderedMCMCParameter class, of which X is an example, defines four inner classes that each implement
the MCMCUpdate interface and that each try to update the OrderedMCMCParameter in different ways. Inner
classes are useful in this context because instances of inner classes have access to the outer class’s fields.

• IndividualUpdate attempts to update individual components of the parameter. It determines the
upper and lower limits that the component must stay within in order to satisfy the ordering restrictions.
Then it adds a Gaussian amount to the component, rejecting the step immediately if the new value is
outside the range. Otherwise the Metropolis step proceeds as usual.
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• ShiftUpdate adds a common constant to all the X’s corresponding to a single race. This update
together with ScaleUpdate given below was intended to speed the convergence of the center and scale
of the X’s.

• ScaleUpdate rescales the X ′s corresponding to a single race, by the mapping Xij ← X̄i + b(Xij − X̄i),
where X̄i is the mean of the Xkj ’s with k = i. b is lognormal, so this update requires a Jacobian adjust-
ment to the Metropolis likelihood ratio, and this adjustment is implemented in acceptanceProbability().

• UniformUpdate. When OrderedMCMCParameters are updated using only the first three types of up-
dates, there is a tendency for all but the extreme X’s in a race to be crammed together. This happens
when ShiftUpdates rescale the X’s to a narrow scale, then the extreme X’s spread away from the bulk
due to IndividualUpdates. Now dilations due to ScaleUpdates are discouraged because the extreme
X’s would be very far from the center. To solve this problem we use UniformUpdates: they leave the
extreme X’s of a race fixed, but reassign the interior X’s using a sample from the uniform distribution
(preserving the same order).

Classes which need to be updated in several different ways should be designed in this way with inner classes
that implement MCMCUpdate. The class then constructs an array of objects that belong to these inner classes,
and then the outer class’s update() method calls the update() methods of each of the elements of the array
in order to perform all necessary updating. Often the methods of these inner classes that operate on the
same class will have some similarity, so that sometimes it will be useful to define a base class which all of
these update classes will inherit from.

3 Future Work

YADAS was designed in order to be extensible, there are plans for adding new capabilities. Planned examples
include generalized linear models, multivariate normal distribution support, variable subset selection, and
model averaging. Some other more fundamental extensions include the following.

3.1 Graphical User Interface

The processes for defining parameters, bonds, and updates are similar enough across applications that
YADAS could benefit from a graphical user interface to save users from having to write any Java code at all
in many situations. However, it is important that the GUI code generate Java code for a main() method,
since it is generally easier and more reliable to tweak the analysis using the Java code than it will be to
go back through all the manipulations of the GUI. Another possibility is to give the code the capability of
loading old analyses so that the analyst can make small changes. The author is also developing a system to
do this sort of thing. A desired result is a web-based journal of data analyses in which readers may replay
the authors’ analyses, and explore whether conclusions change if the analysis is modified, for example by
using different covariates, adding another data set, or using the reader’s own tool.

3.2 an MCMC class

I also intend to make it possible to include an entire statistical model in an object, so that an analysis can
(for example) construct an array of these objects and estimate them in turn. An example of a method that
this MCMC will have is the ability to add new data to the already analyzed data set. There should be other
methods which mutate the model in interesting ways. If an intelligent way of adaptively changing the step
sizes were available, the software could take over this responsibility if a changeStepSize() method existed.
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Methods should also be present for changing distributions, removing bonds, changing the group information
for a parameter, and undoubtedly many others.

Another reason an MCMC class is needed is the “hybrid design” problem in which one uses a genetic
algorithm to evaluate expected information gains in a Bayesian model when resources are devoted to several
different types of experiments; see Hamada et al (2001). To do this it is important to be able automatically
to construct, perform, and evaluate a sequence of analyses.

3.3 an MCMCMonitor interface?

I am entertaining the possibility of developing an architecture for monitoring the convergence and other
behavior of the MCMC. So far, the code sends output in the form of the values of MCMCParameters at each
iteration to output files with the same names as the parameters, but the architecture is flexible enough to
allow for more general monitoring.
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